

Recent OSS Radiative Transfer Model Improvements and Application to Sounding

Jean-Luc Moncet, Gennadi Uymin, Richard Lynch, Hilary E. Snell, Ryan Aschbrenner,

Karen Cady-Pereira, Bob d'Entremont AER Inc.

EDR Algorithm Development and Instrument Design Testing Environments:

- · Develop system with dual tasks in mind
 - •Advance the state of Atmospheric and surface parameter retrieval algorithms
 - •State of the art forward models
 - •Both LBL and Fast model
 - •Aid in the development and testing of new instrument designs
- Modularized software developed which allows for transparent updates/changes in retrieval algorithms and forward model development
- Can either simulate observations or ingest "real" measurement data
- Optimal Spectral Sampling(OSS) fast radiative transfer model primary RT model
 - Modular design does not limit testing other RT models including line-by-line(LBL)
- Examples of recent trade studies/algorithm development efforts
 - •OSS comparison with OPTRAN with the JCDA: AIRS ILS
 - •OSS validation studies using AIRS data
 - Testing retrieval algorithms with AIRS:
 - •Both land and ocean environments
 - •Temperature and Water vapor retrieval
 - Surface emissivity
 - Cloud property retrievals
 - •HES instrument design trades
- Development efforts centered around
 - Unified Retrieval(UR) algorithm/infrastructure
 - •OSS development/implementation

AER's Unified Retrieval (UR) Physical Algorithm Concept:

- Concept is to retrieve state parameters simultaneously with the ability to incorporate several data sources into the retrieval stream
- Initially applied and tested with DMSP Block 5D3 sensor suite
- Is the basis for the <u>NPOESS CrIMSS</u> and <u>CMIS</u> EDR algorithms.
 ATBD's available from the IPO (not most recent revisions)
 - •http://140.90.86.6/IPOarchive/SCI/atbd/ATBD V.02CorePhysicalInversionModule.pdf
 - *http://140.90.86.6/IPOarchive/SCI/atbd/cris atbd 03 09 01.pdf
- Incorporates state of the art OSS fast radiative transfer model
- Tested on recent Satellite/Aircraft based instruments
 - •AMSU •SSMI •AMSR
 - •AIRS •NAST-I

Optimal Spectral Sampling(OSS)

- OSS absorption parameterization leads to <u>fast</u> and numerically accurate RT modeling:
- •OSS-based RT model can approach line-by-line calculations arbitrarily closely
- · Adjustable numerical accuracy:
 - Possibility of trade off between accuracy and speed
- Unsupervised training
- No empirical adjustment:
- •Provides flexible handling of (variable) trace molecular species
- Designed to handle large number of variable trace species w/o any change to model – low impact on computational cost
- · Selection of variable trace gases at run time
- •Memory requirements do not change whether we are dealing with one or more instruments
- Execution speed primarily driven by total spectral coverage and maximum spectral resolution (not by number of instruments)
- Accurate handling of multiple scattering (cloudy radiance assimilation)
 - OSS-SCAT
- •Used in:
- NPOESS/ CrlS, CMIS and OMPS (IR) retrieval algorithms
- JCSDA CRTM
- •Beta version of OSS-based CRTM about to be tested at NCEP (Garand et al. 2001),
- •Recent ITSC AIRS comparison (Saunders et al., 2005)
- Currently working on integrating into <u>MODTRAN</u>(AFRL-sponsored effort)
- •NASA's Mars Fundamental Research Program: OSS forward model has been developed for the Thermal Emission Spectrometer (TES) onboard the Mars Global Surveyor spacecraft (Christensen et al. 2001).

OSS tables in use for many instrument designs

- Microwave:
 - AMSU(NOAA and EOS) •AMSR
 - SSMI, SSMI/S •ATMS(NPOESS,NPP)
 - CMIS(NPOESS)
- IF
 - CrlS(NPOESS,NPP) •AIRS
 - NASTI(Airborne)
 HES(PORD)

Optimal Spectral Sampling (OSS) Method:

OSS fast forward model

•Channel radiance for inhomogeneous atmospheric path represented by weighted sum over specific frequencies or "nodes"

$$\overline{R} = \int_{\Delta \mathbf{n}} \mathbf{f}(\mathbf{n}) R(\mathbf{n}) d\mathbf{n} \cong \sum_{i=1}^{N} w_i R(\mathbf{n}_i); \qquad ?_i \in \Delta \mathbf{n}$$

•Automated search for smallest subset of nodes and weights for which the error is less than a prescribed tolerance

$$\left\{ \left(\mathbf{n}_{i}, w_{i} \right) \mid i = 1, ..., N \right\}$$

$$\left\{ \left(\mathbf{n}_{i}, w_{i} \right) \ i = 1,..., N \right\} \qquad \mathbf{e}_{N} = \sum_{s} \left[R^{s} - \sum_{i=1}^{N} w_{i} R_{\mathbf{n}_{i}}^{s} \right]^{2}$$

- •In the training, radiances calculated with a line-by-line model (e.g. LBLRTM, GENLN) using a globally representative ensemble of atmospheres, surface conditions, viewing angles, etc..
- Radiance training fast
 - Planck function accounted for exactly

Localized versus Generalized Training

- Localized training (benchmark) operates on individual channels, one at a time - node redundancy due to overlapping ILS
- •AIRS (2378 channels):
 - Average # nodes per channel: ~9 nodes/channel
 - Total number of nodes/number of channel (i.e. no redundancy) = 1.9 nodes/channel

- Generalized Training operates on groups of N channels (up to full channel set)
- Exploits node-to-node correlation to minimize total number of nodes across a spectral domain
- Results in significant increase in number of points in any given channel

OSS Applied to the AIRS ILS

- Training performed with 260 profiles
- Threshold: 0.05K
- Validation performed using 52 independent profiles
- Both sets obtained from ECMWF
- Errors for two tolerance values, 0.1K and 0.05K

<u>Jacobians</u>

- · Required for retrievals/assimilations
- Calculated at little added computational cost
 - Simultaneous with radiance
- · Analytic Jacobians, not finite diff.
 - Temperature
 - •All variable gases
 - Surface properties
 - •Future: Cloud properties in adding/doubling scheme

RTM structure •Main loop is the node loop • Internal channel loop to update channel radiance and Jacobians • Similar structure adopted for CRTM •I I T of kabs stored for all relevant molecules as a function of

- •LUT of *kabs* stored for all relevant molecules as a function of temperature
- Self broadening included for water vapor
- Maximum brightness temperature error with current LUT < 0.05K in infrared and <~0.01K in microwave
- •Use simple monochromatic RT model (clear or scattering)
 - Jacobians (required for retrieval applications) are straightforward in the clear-sky (e.g. CrIS ATBD)

OSS in JCSDA CRTM: Comparison with OPTRAN

- •OSS compared with OPTRAN, AIRS ILS
 - Timing
 - Accuracy

Timings based upon 48 profiles, 7 angles (336 total)

	OPTRAN-V7	OPTRAN-comp	OSS
	Forward, Jacobian + Forward	Forward, Jacobian + Forward	Jacobian + Forward
AIRS	7m20s, 22m36s	10m33s, 35m12s	3m10s
HIRS	4s, 13s	5s, 17s	9s

OSS incorporated into CRTM
 Both MW and IR will be available

Comparison with LBL calculations Radiance residual RMS

 $\mathbf{y}^{\mathbf{m}} = \mathbf{A} \ \tilde{\mathbf{y}}^{\mathbf{m}} \rightarrow \hat{\tilde{\mathbf{y}}}^{\mathbf{m}} = \mathbf{H} \ \mathbf{y}^{\mathbf{m}}$

Avoids Jacobians transformation all

together and reduce K-matrix size (inversion speed up)

• for AIRS: 2378 channels -> 250 nodes

$$\begin{split} dx_{n+1} = & \left(\tilde{K}_n^T \tilde{S}_e^{1} \tilde{K}_n + S_x^{-1} \right) \tilde{K}_n^T \tilde{S}_e^{1} \left[\left(\tilde{y}_n - \tilde{y}^m \right) + \tilde{K}_n dx_n \right]^{**} \\ \text{**Equivalent to} \end{split}$$

 $d\boldsymbol{x}_{n+1} = \left(\boldsymbol{K}_{n}^{T}\!\boldsymbol{S}_{e}^{\boldsymbol{\cdot}\boldsymbol{i}}\!\boldsymbol{K}_{n} + \boldsymbol{S}_{x}^{1}\right)\boldsymbol{K}_{n}^{T}\boldsymbol{S}_{e}^{\boldsymbol{\cdot}\boldsymbol{i}}\!\left[\left(\boldsymbol{AHy}_{n}\!-\!\tilde{\boldsymbol{y}}^{m}\right)\!+\!\boldsymbol{K}_{n}\!d\boldsymbol{x}_{n}\right]$

•Need strategy for handling input dependent noise_

 Scene temperature dependence (clear/cloudy)

- worse in SW band
- Cloud clearing noise amplification
- •H-transformation not overly sensitive to noise
- For clear retrievals: sufficient to update noise covariance regionally